3. If \(B = [0,1] \times [0,1] \times [0,1] \) and \(f(x,y,z) = x^2, \)

THEN \(\int_B f = \int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} x^2 \, dz \, dy \, dx = \int_{x=0}^{1} \int_{y=0}^{1} \left[\int_{z=0}^{1} x^2 \, dz \right] \, dy \, dx = \int_{x=0}^{1} \int_{y=0}^{1} x^2 \, dy \, dx = \int_{x=0}^{1} x^2 \, dx = \left[\frac{1}{3} x^3 \right]_{0}^{1} = \frac{1}{3} \cdot 1 = \frac{1}{3} \)

5. If \(B = [0,2] \times [-1,1] \times [0,1] \) and \(f(x,y,z) = 2x + 3y + z, \)

THEN \(\int_B f = \int_{x=0}^{2} \int_{y=-1}^{1} \int_{z=0}^{1} (2x + 3y + z) \, dz \, dy \, dx = \int_{x=0}^{2} \int_{y=-1}^{1} \left[\int_{z=0}^{1} (2x + 3y + z) \, dz \right] \, dy \, dx = \int_{x=0}^{2} \int_{y=-1}^{1} (2x + 3y) \, dy \, dx = \int_{x=0}^{2} \left[\int_{y=-1}^{1} 2x \, dy + 3y \right]_{y=-1}^{1} \, dx = \int_{x=0}^{2} \left[2x(-1) + 3 \cdot 1 \right] \, dx = \int_{x=0}^{2} 4x + 1 \, dx = \left[2x^2 + x \right]_{x=0}^{2} = (2 \cdot 2^2 + 2) - (2^2 + 2) = 8 + 2 = 10 \)

When slicing 3-dimensional regions, we often slice \(x, y, z \) first and \(z = a \) last. In this case, we can break our work into two steps:

1. Find the "shadow" of the region in the xy-plane.
2. Determine, for each \((x, y)\) in the shadow, the bottom and top values of \(z \) in the region.

This gives us the slicing in \(x, y, \) and \(z \) gives the range for \(z \).

* Often, the xy-shadow is not fully described explicitly; in this case, we can check anywhere any surfaces intersect to find the required information.

E.g., if \(f(x, y) + z = g(x, y) \) are bounding surfaces, find where they intersect, i.e., where \(f(x, y) = g(x, y) \).

13. The volume of the solid \(R \) bounded by:

\[
\begin{align*}
x &= y, \\
y &= 0, \\
z &= 0, \\
and \ x + y + z &= 1
\end{align*}
\]

Let's start with the shadow of \(R \):

This is a triangular region in the xy-plane, and we can describe it via:

\[
\begin{align*}
x &= 0, \\
y &= 0, \\
z &= 0, \\
\text{and} \quad x + y + z &= 1
\end{align*}
\]

What we have left tells us what \(z \) does above each point in this triangle:

\(z = 0 \) is one bound and \(x + y + z = 0 \) gives the other: \(z = -x - y \). Of these, \(-x - y \) is lower, so \(z = -x - y \).

This is so far every point in the triangle!

Finally, volume of \(R = \int_{R} 1 \)

\[
= \int_{x=0}^{1} \int_{y=0}^{x} \left[\int_{z=0}^{1} 1 \, dz \right] \, dy \, dx
\]

\[
= \int_{x=0}^{1} \int_{y=0}^{x} \left[\frac{y}{2} \right] \, dy \, dx
\]

\[
= \int_{x=0}^{1} x^2 \, dx = \left[\frac{1}{3} x^3 \right]_{x=0}^{1} = \frac{1}{3} - 0 = \frac{1}{3}
\]

\[
= \int_{x=0}^{1} x^2 \, dx = \left[\frac{1}{3} x^3 \right]_{x=0}^{1} = \frac{1}{3} - 0 = \frac{1}{3}
\]
16. \[\int_0^1 \int_0^x \left(\int_{y=0}^1 y + x^2 \, dy \right) \, dx \]
\[= \int_0^1 \left[\int_{y=0}^1 y + \frac{1}{2} x^2 \right]_0^1 \, dy \, dx \]
\[= \int_0^1 \left[\frac{1}{2} y^2 + \frac{1}{2} x^2 \right]_0^1 \, dy \, dx \]
\[= \int_0^1 \frac{1}{2} x^2 + \frac{1}{6} x^4 \, dx = \left[\frac{1}{12} x^4 + \frac{1}{30} x^5 \right]_0^1 = \frac{1}{12} + \frac{1}{30} = \frac{7}{60} \]

25. ("Shadow" Method: no x, y bounds are explicitly given, so they must be implicit in \(\sqrt[4]{x^2+4y^2} \geq 1 \))

The region will end when the bottom surface \(z = \sqrt[4]{x^2+4y^2} \) and the top surface \(z = 1 \) meet:

\[\sqrt[4]{x^2+4y^2} = 1 \Rightarrow x^2+4y^2 = 1, 1 \leq y \leq \]

The unit circle.

\[\begin{array}{c}
\text{The Shadow of } \mathcal{W} \text{ is:} \\
y = \pm \sqrt{1-x^2}
\end{array} \]

Solving for \(y \) in terms of \(x \),

\[y = \pm \sqrt{1-x^2} \]

gives us the \(y \) range for each \(x \)-slice, so the shadow can be described as:

\[\begin{cases} x: -1 \ldots 1 \\ y: -\sqrt{1-x^2} \ldots \sqrt{1-x^2} \end{cases} \]

The \(z \)-range was already given as \(z: \sqrt{x^2+y^2} \ldots 1 \), so

we can compute \(\int_{\mathcal{W}} f \) as

\[\int_{x=-1}^1 \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^1 f(x,y,z) \, dz \, dy \, dx \]

28. (They're being tricky here — even though \(x + y \) have been completely described via \(x \leq 1, |y| \leq 1 \), the bottom surface \(z = 0 \) and the top surface \(x^2 + y^2 + z^2 = 1 \) cut off an even smaller region, so they affect the shadow.)

\[z = 0 \text{ and } x^2 + y^2 + z^2 = 1 \]
\[\Rightarrow x^2 + y^2 = 1 \]

As in #25, we can describe the unit disk by

\[\begin{cases} x: -1 \ldots 1 \\ y: -\sqrt{1-x^2} \ldots \sqrt{1-x^2} \end{cases} \]

So, \(\int_{\mathcal{W}} f \) can be computed as:

\[\int_{x=-1}^1 \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^{1-x^2-y^2} f(x,y,z) \, dz \, dy \, dx \]