M&T §6.4

To set up an improper integral, first determine what about the shape is causing problems, then devise a means of expressing your shape as a limit of shapes that avoid the problem areas. Compute the integral over the "nice" shapes, then take the appropriate limit.

1. Here \(D = [0,1] \times [0,1] \) and \(f(x,y) = \frac{1}{\sqrt{xy}} \); we're asked to find \(\int_D f \).

Trouble spots are when \(x \) or \(y \) is zero... sketch \(D \) and set up a limit of regions that fill up \(D \) but avoid the \(x \)-\(y \) axes.

Let \(D_\varepsilon = [\varepsilon,1] \times [\varepsilon,1] \) for \(\varepsilon > 0 \). As \(\varepsilon \to 0^+ \), \(D_\varepsilon \) fills up more and more of \(D \), so we set

\[
\int_D f = \lim_{\varepsilon \to 0^+} \int_{D_\varepsilon} f.
\]

Now, \(\int_{D_\varepsilon} f = \int_{x=\varepsilon}^{1-\varepsilon} \int_{y=\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{xy}} \, dy \, dx \)

\[
= \left[\frac{1}{\sqrt{x}} \right]_{x=\varepsilon}^{1-\varepsilon} \cdot \int_{y=\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{y}} \, dy
\]

\[
= [2\sqrt{1-\varepsilon} - 2\sqrt{\varepsilon}] \cdot \left[2\sqrt{1-\varepsilon} - 2\sqrt{\varepsilon} \right]^2
\]

\[
= (2 - 2\varepsilon)^2
\]

\[\int_D f = \lim_{\varepsilon \to 0^+} \int_{D_\varepsilon} f = \lim_{\varepsilon \to 0^+} (2 - 2\varepsilon)^2 = 4, \quad \text{converges!} \]

10. \(\int_{x=0}^{a} \int_{y=0}^{a} \frac{x}{\sqrt{a^2-y^2}} \, dy \, dx \):

Region \(R \) is \([0,1] \times [0,a] \)

Scalar field is \(f(x,y) = \frac{x}{\sqrt{a^2-y^2}} \).

Trouble when \(y = a \), so avoid it.

Set this up as a limit of integrals over regions \(R_t = [0,1] \times [0,t] \)

and take the limit as \(t \to a^- \):

\[
\int_{R_t} f = \lim_{t \to a^-} \int_{R_t} f = \lim_{t \to a^-} \int_{y=0}^{a} \int_{x=0}^{1} \frac{x}{\sqrt{a^2-y^2}} \, dx \, dy
\]

\[
= \left[\int_{x=0}^{1} x \, dx \right] \left[\int_{y=0}^{a} \frac{1}{\sqrt{a^2-y^2}} \, dy \right]
\]

\[
= \left[\frac{1}{2} t^2 \right]_{x=0}^{1} \cdot \left[-\frac{1}{a} \arcsin \frac{y}{a} \right]_{y=0}^{a}
\]

\[
= \left[\frac{1}{2} - 0 \right] \cdot \left[-\frac{1}{a} \arcsin \frac{a}{a} - 0 \right]
\]

\[
= \frac{1}{2a} \arcsin \frac{a}{a}
\]

\[
\therefore \int_{R_t} f = \lim_{t \to a^-} \int_{R_t} f = \lim_{t \to a^-} \int_{y=0}^{a} \int_{x=0}^{1} \frac{x}{\sqrt{a^2-y^2}} \, dx \, dy
\]

\[
= \frac{1}{2a} \cdot \frac{\pi}{2} = \frac{\pi}{4a}
\]