The derivative and scalar fields

Suppose that we have some smooth scalar field \(f : \mathbb{R}^n \to \mathbb{R} \), with its derivative \(Df \).

- From linear algebra, we know that the value of \(Df_p(\vec{v}) \) is always given by dotting \(\vec{v} \) with some vector, denoted by \(\nabla f_p \) or \(\text{grad}_p f \), called the gradient of \(f \) at \(p \); i.e.: \(Df_p(\vec{v}) = \nabla f_p \cdot \vec{v} \).

- Given a point \(p \in \mathbb{R}^n \) and a direction \(\vec{u} \in \mathbb{R}^n \), the directional derivative of \(f \) at \(p \) in the direction \(\vec{u} \) is the (scalar) rate of change of \(f \) when moving in direction \(\vec{u} \) from \(p \), i.e., \(Df_p(\vec{u}) \). Restating this in terms of the gradient, this rate of change is given by \(\nabla f_p \cdot \vec{u} \).

Interpreting this dot product geometrically as \(\|\nabla f_p\| \cos \theta \), we find that at the point \(p \):

- \(f \) increases most rapidly in the direction of \(\nabla f_p \), with \(\|\nabla f_p\| \) giving the rate.
- \(f \) decreases most rapidly in the direction opposite \(\nabla f_p \).
- \(f \) remains constant in directions \(\perp \nabla f_p \).

- Considering that \(p \mapsto \nabla f_p \) assigns to each point a vector, we see that \(\nabla f \) defines a vector field, called the gradient field of \(f \).

 - This vector field always points in the direction of most rapid increase for the function \(f \), and it is perpendicular to all isosets of \(f \).
The derivative and vector fields

- The **divergence** of a vector field \vec{F} is a scalar field, denoted by $\text{div} \, \vec{F}$ or $\nabla \cdot \vec{F}$. This scalar field measures, at each point, how much the vector field pushes away ("diverges") from that point. A vector field for which $\text{div} \, \vec{F} \equiv 0$ is called **incompressible**.

- The **curl** of a vector field \vec{F} is another vector field, denoted by $\text{curl} \, \vec{F}$ or $\nabla \times \vec{F}$. This vector field measures, at each point, how the vector field rotates ("curls") at that point. Specifically, the vector field exhibits right-handed rotation perpendicular to $\text{curl} \, \vec{F}$, with $\|\text{curl} \, \vec{F}\|$ giving the rate of rotation. A vector field for which $\text{curl} \, \vec{F} \equiv \vec{0}$ is called **irrotational**.