Integration in Euclidean space

In general, an integral represents a product in which one of the factors is not constant.

More specifically: suppose that a quantity we’re interested in computing is a product of the size (length, area, volume, time) of a shape and some scalar value, when the scalar value is constant. Then an integral is how we compute that same quantity when the value varies over the shape, e.g.:

- If I is an interval and h gives height, then $\text{Area} = |I|h$ when h is constant. Thus when h varies, $\text{Area} = \int_I h$.

- If R is a 2-region and h gives height, then $\text{Volume} = |R|h$ when h is constant. Thus when h varies, $\text{Volume} = \int_R h$.

- If R is some shape and σ gives density, then $\text{Mass} = |R|\sigma$ when σ is constant. Thus when σ varies, $\text{Mass} = \int_R \sigma$.

- If \vec{F} is a velocity field on a curve C, choosing a unit tangent vector \vec{T}, Circulation $= |C| (\vec{F} \cdot \vec{T})$ when \vec{F}, \vec{T} are constant. So when \vec{F} and/or \vec{T} vary, Circulation $= \int_C \vec{F} \cdot \vec{T}$; (if \vec{F} is a force field, this quantity gives work).

- If \vec{F} is a vector field on a surface S, choosing a unit normal vector \vec{n}, Flux $= |S| (\vec{F} \cdot \vec{n})$ when \vec{F}, \vec{n} are constant. So when \vec{F} and/or \vec{n} vary, Flux $= \int_S \vec{F} \cdot \vec{n}$.
Methods of integration

We’ll be interested in computing integrals over three classes of shapes:

Intervals: \(\int_I f \) can be computed, just as in single-variable calculus, by the FTC:
\[
\int_a^b f = F(b) - F(a), \quad \text{where } F' = f.
\]

Simple regions: Integrals over simple regions can be computed via *iterated integration*, iteratively computing single-variable integrals as above.

All other shapes: [Use parametrization and pull-back]

To compute an integral \(\int_S f \) of some scalar field \(f \) over a complicated shape \(S \), we’ll:

- **Parametrize** \(S \) via a mapping \(\Phi : R \to S \), where \(R \) is a “simple” region or interval.
- **Pull back** \(f \) from \(S \) to \(R \), i.e., take the scalar field \(f \circ \Phi \) on \(R \).
- **Determine the magnification** \(\mathcal{M} \) of the mapping \(\Phi \).

Because the values of the scalar field \(f \circ \Phi \) correspond to those of \(f \), the only difference between integrating one or the other is the local magnification \(\mathcal{M} \) of the mapping.

Accounting for this, we can compute an integral over a complicated shape \(S \) by translating the problem to the simple region \(R \):

\[
\int_R (f \circ \Phi) \cdot \mathcal{M} = \int_S f
\]